
WASTE Documentation 1

WASTE DOCUMENTATION

Written by: Marco Piovanelli (piovanel@dsi.unimi.it)

Version: 1.0a4 (May 1994)

Copyright © 1994 Marco Piovanelli

This document describes WASTE, a WorldScript™-Aware Styled Text Engine for the Macintosh which can be used as the
basis for simple to moderately complex applications dealing with styled text.
WASTE has been designed from the very beginning to be compatible with TextEdit and TextEdit-based applications,
although not everything you can do with TextEdit can be done with WASTE and vice versa.
The main features of WASTE are:

• Memory-based editor, with no limit imposed on text size.
• Requires System 7.0 or newer.
• WorldScript™-aware, with one major exception: bidirectional scripts (Arabic and Hebrew) are not currently supported.
• Allows full justification of text.
• Uses offscreen graphics worlds to achieve smooth text redrawing.
• Built-in support for inline input.

This document assumes that you are familiar with the TextEdit model and with text handling on the Macintosh in general,
including the Script Manager and the Text Services Manager.

WASTE Documentation 2

A Brief Overview of WASTE
This section gives you a general overview of WASTE and of what it can do for your application. Since WASTE is so similar
to TextEdit, a special emphasis is given to those areas in which the two models diverge.

WASTE data structures

WASTE header files contain very few type declarations, since all internal data structures are private and cannot be accessed
directly. There is no type declaration for the internal format of a WE instance, the WASTE conterpart to a TextEdit edit
record. Instead you refer to a WE instance via an opaque handle. This allows future versions of WASTE to add new
functionality and new data structures painlessly, without breaking existing applications.
You should make no assumptions as to how style and line-layout information is represented internally, but you can count on
the text being stored as a single relocatable block, to which you can obtain a handle. This maximizes compatibility with
existing TextEdit-based applications which rely heavily on this assumption.

Long Coordinates

To allow for text taller than 32,767 pixels (a serious limitation of the TextEdit model), WASTE uses long (32-bit) coordinates
to identify positions within the destination rectangle. This should not constitute a problem for your application, but be careful
if you use a vertical scroll bar!
WASTE comes with an extensive set of utility functions to deal with long coordinates.

How WASTE supports inline input

Support for inline input is built in WASTE so that your application can be friendly to users of double-byte script systems with
a minimal contribution of code.
Starting from version 7.1 of the system software, applications interface to inline input methods through the Text Services
Manager (TSM). TSM routines for use by applications can be roughly divided into two sets: those which refer to TSM
documents and those who don’t. WASTE is designed to handle internally all routines from the first set, as a TSM document
record is automatically associated with each WE instance. Furthermore WASTE implements all required Apple event
handlers and is responsible for properly highlighting ranges in the active input area. Your application retains responsibility for
a set of just four calls, namely InitTSMAwareApplication, CloseTSMAwareApplication, TSMEvent and
SetTSMCursor.

Your application may optionally install callback routines to monitor calls to the main TSM Apple event handler
(kUpdateActiveInputArea).

Where WASTE differs from the TextEdit model

Some subtle and not-so-subtle differences between WASTE and TextEdit are listed below. Most of them are deliberate design
choices.

• WASTE keeps track internally of whether the anchor point of the selection range is at the beginning or

WASTE Documentation 3

at the end; when extending a selection (either by shift-clicking or by using shift + arrow keys), what moves is the free
endpoint of the selection, but never the anchor point. Your application can control which boundary of the selection range is
treated as the anchor point using WESetSelection as described in the reference section.

• To select a range of words, you can double click the first word, then shift-click the last word. The first word clicked
becomes the anchor word of the selection range. In the same way, you can select a range of lines by triple clicking the first
line and shift-clicking the last one, and the first line clicked becomes the anchor line of the selection range.

• Clicking at the end of a line positions the caret past the last non-blank character; any trailing blanks are ignored. The idea is
that this behavior avoids the infamous end-of-line bug that affects TextEdit and even some well known word processors,
whereby clicking at the end of a line and hitting the right arrow key moves the cursor before the second character of the
following line.

• WASTE never draws anything outside the destination rectangle, while TextEdit may highlight portions of the view rectangle
outside the destination rectangle.

• TextEdit’s autoscrolling works on a minimum effort basis (scroll as much as necessary to bring the selection into view, but
no more). On the other hand, WASTE tries to keep the selection centered in the middle of the view rectangle.

WASTE Documentation 4

WASTE Reference

This sections describes all WASTE routines and their parameters in depth.

WEInstallTSMHandlers

Installs Apple event handlers for supporting inline input in the current application’s Apple event dispatch table.

pascal OSErr WEInstallTSMHandlers(void);

DESCRIPTION

WEInstallTSMHandlers installs the Apple event handlers required for supporting inline input in the current application’s
Apple event dispatch table. You should call this function if your application is TSM aware.
After the Apple event handlers have been installed, input methods can communicate with a WE instance without the
intervention of your application.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WENew

Creates a new WE instance and returns a handle to it.

pascal OSErr WENew(const LongRect *destRect, const LongRect *viewRect,
short flags, WEHandle *hWE);

Field descriptions

destRect The initial destination rectangle.
viewRect The initial view rectangle.
flags Miscellaneous flags.
hWE Pointer to a variable of type WEHandle.

DESCRIPTION

WENew creates a complete text editing environment associated with the current graphics port. You specify the initial
destination and view rectangles in the local coordinates of the current graphics port, expressed in long coordinates. The value
of destRect.bottom is immaterial, since it is dynamically updated whenever line breaks are recalculated so that
(destRect.bottom - destRect.top) is always equal to the total pixel height of the text, including any blank lines
at its end.
The initial style attributes (font, size, QuickDraw styles and color) are copied from the current graphics port. The initial
alignment style is weFlushDefault. The initial activation state is inactive.

The flags parameter allows you to enable certain features on creation instead of calling WEFeatureFlag. One of the
flags, weDoUseTempMem, instructs WENew to allocate the main data

WASTE Documentation 5

structures preferably from temporary memory and is only meaningful when passed to WENew (it does nothing when passed to
WEFeatureFlag).

If the Text Services Manager is available and the client application is TSM-aware (i.e., InitTSMAwareApplication has
been called successfully), WENew automatically associates the new instance with a TSM document record.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEDispose

Disposes of a WE instance and of all associated data structures.

pascal void WEDispose(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEDispose releases all memory associated with a given WE instance, including the text handle. If you want to retain the
text, you can either clone the text handle using HandToHand or call WESetInfo with selector set to weText and
*info set to 0 immediately before calling WEDispose.

WEGetDestRect / WESetDestRect / WEGetViewRect / WESetViewRect

Get and set the values of the destination rectangle and the view rectangle.

pascal void WEGetDestRect(LongRect *destRect, WEHandle hWE);
pascal void WESetDestRect(const LongRect *destRect, WEHandle hWE);
pascal void WEGetViewRect(LongRect *viewRect, WEHandle hWE);
pascal void WESetViewRect(const LongRect *viewRect, WEHandle hWE);

Field descriptions

destRect Pointer to the destination rectangle.
viewRect Pointer to the view rectangle.
hWE The WE instance.

DESCRIPTION

These functions allow you to get and set the destination rectangle and the view rectangle associated with the specified WE
instance. The rectangles are in local coordinates. As in the TextEdit model, the destination rectangle is the area in which the
text is drawn (the width of this rectangle specifies the line width used to wrap the text), while the view rectangle is the portion
in which the text is actually displayed. All drawing is clipped to the intersection of these two rectangles.
When the text is scrolled, the destination rectangle is automatically offset by the scrolling amount; the view rectangle is never
changed save by a call to WESetViewRect. The only reason for using long coordinates is to allow for text taller than
32,767 pixels when scrolling, but both the view rectangle and the

WASTE Documentation 6

horizontal coordinates of the destination rectangle must always be limited to the QuickDraw range (-32767 to 32767).
A call to WESetDestRect which alters the line width does not automatically trigger the recalculation of line breaks: you
must call WECalText.

WEGetAlignment / WESetAlignment

Get and set the alignment style associated with a given WE instance.

enum {
weFlushLeft = -2,
weFlushRight,
weFlushDefault,
weCenter,
weJustify

}

pascal char WEGetAlignment(WEHandle hWE);
pascal void WESetAlignment(char alignment, WEHandle hWE);

Field descriptions

alignment The alignment style.
hWE The WE instance.

DESCRIPTION

Use WEGetAlignment and WESetAlignment to get and set the alignment style associated with the specified WE
instance. The alignment style applies to the whole text and can be one of the five values listed above.
WeFlushDefault (the default value) aligns the text according to the current setting of the system global variable
SysDirection (previously known as TESysJust): if you change the value of SysDirection, you should force a
redraw of all WE instances set to this alignment style.
WeJustify aligns the text in the destination rectangle to both left and right margins. The specific way this effect is
achieved is script-dependent.

WEGetText

Returns a handle to the text associated with a given WE instance.

pascal Handle WEGetText(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEGetText returns a handle to the text associated with the specified WE instance; this handle contains the raw character
codes without any formatting information (this information is stored elsewhere).
This handle belongs to the WE instance; you should not destroy it or modify it in any way.

WASTE Documentation 7

WEGetTextLength

Returns the length of the text, in bytes.

pascal long WEGetTextLength(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEGetTextLength returns the length of the text, in bytes, initially zero.

WEGetChar

Returns the character code at a given byte offset.

pascal short WEGetChar(long offset, WEHandle hWE);

Field descriptions

offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION

WEGetChar returns the character code at a given offset inside the text handle associated with the specified WE instance.
This routine always returns byte values, so when dealing with double-byte characters, it returns only one half of the character.
Use WECharByte to determine the byte type of the character code at a given offset. If an invalid offset is specified,
WEGetChar returns zero.

WECharByte

Returns the byte type (smSingleByte, smFirstByte or smLastByte) of the character code at the specified offset.

pascal short WECharByte(long offset, WEHandle hWE);

Field descriptions

offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION

WECharByte returns the byte type of the character code at a given offset inside the text handle associated with the specified
WE instance. If an invalid offset is specified, WECharByte returns smSingleByte.

WECharType

WASTE Documentation 8

Returns the character type of the character code at the specified offset.

pascal short WECharType(long offset, WEHandle hWE);

Field descriptions

offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION

WECharType returns the character type of character code at a given offset inside the text handle associated with the
specified WE instance. If an invalid offset is specified, WECharType returns zero.

WEGetRunInfo

Returns style information associated with the text run containing the specified offset.

typedef struct WERunInfo {
long runStart;
long runEnd;
short runHeight;
short runAscent;
TextStyle runStyle;

} WERunInfo;

pascal void WEGetRunInfo(long offset, WERunInfo *runInfo, WEHandle hWE);

Field descriptions

offset The byte offset to the desired character code.
runInfo Pointer to a record where the requested information is returned.
hWE The WE instance.

DESCRIPTION

WEGetRunInfo returns a WERunInfo record which describes the style attributes associated with the style run the specified
offset belongs to. This record specifies the boundaries of the style run, font metrics information and style attributes proper.
When called for the last style run in the text, WEGetRunInfo returns textLength + 1 in runEnd, instead of
textLength.

WEContinuousStyle

Determines which text attributes are continuous over the current selection range.

pascal Boolean WEContinuousStyle(short *mode, TextStyle *ts, WEHandle hWE);

Field descriptions

mode Pointer to a selector. On input, the selector specifies the attributes to test.
On output, the selector specifies the attributes continuous over the selection range.

ts Pointer to a TextStyle record set to the continuous attributes.

WASTE Documentation 9

hWE The WE instance.

DESCRIPTION

Call WEContinuousStyle to determine whether a given set of text attributes is continuous over the selection range. On
input, you specify in mode which attributes are to be tested for continuousness. On output, mode specifies which ones were
found to be continuous over the current selection range and the corresponding fields of ts are set to the continuous attributes.
The function result is TRUE if all tested attributes are continuous, FALSE otherwise.

On output, the weDoFace bit is set in mode if at least one QuickDraw style is continuous over the selection range: in this
case ts.tsFace specifies only the continuous styles. If weDoFace is set and ts.tsFace is zero (i.e., the empty set),
then the whole selection range is plain text.
If the selection range is empty, the returned attributes are copied from an internal null style record which holds the styles to
be applied to the next character typed.
If WEContinuousStyle detects that the keyboard script has changed since the null style record was last updated, it
changes the font in the null style record to match the new keyboard script. The new font is searched among the fonts
preceding the insertion point; if none is found, the default application font for the keyboard script is used.

EXAMPLES

short mode;
TextStyle ts;

mode = weDoAll; // check all attributes
WEContinuousStyle(&mode, &ts, hWE); // ignore function result

if (mode & weDoFont)
MyCheckFontMenu(ts.tsFont);

if (mode & weDoSize)
MyCheckSizeMenu(ts.tsSize);

if (mode & weDoFace)
MyCheckStyleMenu(ts.tsFace);

if (mode & weDoColor)
MyCheckColorMenu(&ts.tsColor);

WECopyRange

Makes a copy of the text and/or the styles in the specified range.

pascal OSErr WECopyRange(long rangeStart, long rangeEnd, Handle hText,
StScrpHandle hStyles, WEHandle hWE);

Field descriptions

rangeStart Offset to the beginning of the range.
rangeEnd Offset to the end of the range.
hText Handle to a relocatable block where a copy of the text is returned.

WASTE Documentation 10

hStyles Handle to a relocatable block where a copy of the styles is returned.
hWE The WE instance.

DESCRIPTION

WECopyRange makes a copy of the text and/or the style information in the specified range. You pass valid handles in
hText and hStyles and these handles are resized appropriately; you can also pass NULL in either parameter if you don’t
want the corresponding information returned. The style information is returned in the standard TextEdit style scrap format
(the same format used for the styl Clipboard data type). Be aware that while this format is very simple to use, it is also very
inefficient space-wise and it can take up a lot of memory. Furthermore, if there are more than 32,767 style runs in the
specified range, the scrpNStyles field of the style scrap will contain invalid information.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECountLines

Returns the number of lines.

pascal long WECountLines(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WECountLines returns the number of lines of text associated with the specified WE instance, initially one. If the last
character in the text is a carriage return (ASCII 13), the last line is not taken into account by WECountLines.

WEGetHeight

Returns the cumulative pixel height of a given line range.

pascal long WEGetHeight(long startLine, long endLine, WEHandle hWE);

Field descriptions

startLine Index to the first line in the range.
endLine Index to the last line in the range.
hWE The WE instance.

DESCRIPTION

WEGetHeight returns the cumulative pixel height of the specified line range. The startLine and endLine parameters
specify positions between lines (just as byte offsets specify positions between characters): 0 specifies the top of the
destination rectangle, 1 specifies the position between the first and the second line, etc. Alternatively, you can think of
startLine and endLine as line indices (the first line

WASTE Documentation 11

being line zero), but in this case keep in mind that WEGetHeight returns the pixel height from startLine included to
endLine excluded, while the TextEdit routine TEGetHeight includes both lines in the computation. StartLine and
endLine are pinned to the range 0..nLines and reordered if necessary. If the last character in the text is a carriage return
(ASCII 13), the height of the last line is not taken into account by WEGetHeight. The data structures used by WASTE
make WEGetHeight a cheap call (much faster then TEGetHeight when endLine - startLine is large).

WECalText

Recalculates line breaks and other data structures used internally to keep track of line layout for the whole text.

pascal OSErr WECalText(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WECalText recalculates line breaks and other data structures related to line layout for the whole text. You normally don’t
need to call this function during normal editing operations since WASTE performs all the necessary recalculations
automatically. You do need to call WECalText, however, if you called WEUseText to completely replace the text or if you
called some editing routines with automatic recalculation turned off (see WEFeatureFlag for details on how to disable
automatic recalculation). WECalText is an expensive call which can easily take several seconds to complete, so use it
sparingly.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEUpdate

Call WEUpdate in response to an update event in the view rectangle.

pascal void WEUpdate(RgnHandle updateRgn, WEHandle hWE);

Field descriptions

updateRgn Handle to the region to redraw, in local coordinates.
hWE The WE instance.

DESCRIPTION

WEUpdate draws the portion of text specified by updateRgn. You tipically call this function after getting an update event
in the view rectangle. Be sure to erase the update area to the background color before calling WEUpdate, otherwise the text
may not be redrawn correctly.
If you pass NULL in updateRgn, the whole view rectangle is erased and redrawn.

SPECIAL CONSIDERATIONS

WASTE Documentation 12

If you use WEUpdate within a standard printing loop for imaging the text to a printer, be sure to turn off offscreen drawing,
otherwise the QuickDraw bottlenecks set up for printing will only intercept _StdBits calls instead of _StdText calls,
with possible ill effects on print quality.

WEActivate

Call WEActivate when the window that owns the WE instance receives an activate event.

pascal void WEActivate(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEActivate marks the specified WE instance as active and redraws the current selection range accordingly. If a TSM
document record is associated with the WE instance, WEActivate notifies the Text Services Manager of the change. You
should call WEActivate before calling WEClick or WEKey; otherwise the selection range may not be drawn correctly.

WEDeactivate

Call WEDeactivate when the window that owns the WE instance receives a deactivate event.

pascal void WEDeactivate(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEDeactivate marks the specified WE instance as inactive and redraws the current selection range accordingly. If a TSM
document record is associated with the WE instance, WEDeactivate notifies the Text Services Manager of the change.

WEScroll

Call WEScroll to scroll the text within the view rectangle by a given amount of pixels.

pascal void WEScroll(long hOffset, long vOffset, WEHandle hWE);

Field descriptions

hOffset Amount to scroll horizontally, in pixels.
vOffset Amount to scroll vertically, in pixels.
hWE The WE instance.

DESCRIPTION

WASTE Documentation 13

WEScroll offsets the destination rectangle by the specified amount of pixels, horizontally and/or vertically, and it updates
the text in the view rectangle to reflect the change. Positive values of hOffset move the text to the right. Positive values of
vOffset move the text down.

WEScroll may be called internally by other WASTE routines if you enabled the auto scrolling feature: when this happens,
the scroll callback routine (see the description of the WESetInfo routine), if present, is invoked. The scroll callback is not
invoked, however, when you call WEScroll directly.

WESelView

Call WESelView to ensure that the current selection range is visible.

pascal void WESelView(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WESelView checks to see if the current selection range (specifically, the free endpoint of the selection range) is within the
view rectangle. If it isn’t, WESelView scrolls the text to show the selection range, trying to center it in the middle of the
view rectangle.
If automatic scrolling is disabled (see the description of the WEFeatureFlag routine), WESelView has no effect.

WEStopInlineSession

WEStopInlineSession stops the ongoing inline input session (if any) and causes all unconfirmed text in the active input
area to be confirmed.

pascal void WEStopInlineSession(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEStopInlineSession terminates the ongoing input session (if any) by calling the TSM function FixTSMDocument,
which in turn calls a component function in the current input method, which finally results in an Apple event being sent to the
specified WE instance to close the active input area. If the Text Services Manager isn’t available, nothing happens.

WEKey

Call WEKey when you receive a keyDown or autoKey event directed to the window that owns a given WE instance.

pascal void WEKey(short key, short modifiers, WEHandle hWE);

WASTE Documentation 14

Field descriptions

key The character code.
modifiers The modifiers field of the event record.
hWE The WE instance.

DESCRIPTION

WEKey inserts the specified character at the insertion point. If the current selection is not empty, it is replaced by the new
character.
If key is the backspace character, WEKey deletes the character preceding the insertion point or, if the selection range is not
empty, it deletes the current selection.
If key is an arrow key, WEKey moves the insertion point accordingly or, if the selection range is not empty, it collapses the
current selection to one of its endpoints. The modifiers parameter is taken into account when handling arrow keys:
currently the only supported modifier is the shift key, which can be used to extend or shrink the selection range.
If a double-byte script system is installed and key is the first half of a double-byte character, key is not immediately inserted
into the text, but rather it is cached internally. When the second byte arrives, the whole character is inserted.
Backspace deletes characters, not bytes. Be aware of this if you want to implement an Undo feature. Also, the left and right
arrow keys move backwards and forward by whole characters, not bytes.

WEClick

Call WEClick in response to a mouse-down event in the view rectangle.

pascal void WEClick(Point hitPt, short modifiers, long clickTime,
WEHandle hWE);

Field descriptions

hitPt The hit point in local coordinates.
modifiers The modifiers field of the event record.
clickTime The when field of the event record.
hWE The WE instance to activate.

DESCRIPTION

WEClick handles key-down events directed to the view rectangle of the WE instance, retaining control until the mouse
button is released. The current selection range is continuously modified as the mouse moves and the highlighting is redrawn
accordingly.
If the shift key wasn’t held down, the hit point becomes the new anchor point of the selection range while the position where
the mouse button is released becomes the new free endpoint. If the shift key was held down, the anchor point is not changed,
but the free endpoint can be moved.
A double-click selects a word, and dragging the mouse or shift-clicking afterwards extends or shrinks the selection word by
word. Triple-clicks do the same, but this time line by line.
You can install a callback routine which is called repeatedly while the mouse is being tracked by WEClick: call
WESetInfo with selector set to weClickLoop and *info set to the address of your callback routine.

Your callback should be a function of type WEClickLoopProcPtr, declared as follows:

pascal Boolean MyClickLoop(WEHandle hWE);

WASTE Documentation 15

The hWE parameter contains the WE instance where mouse tracking is taking place. Your callback routines should normally
return true. Returning false causes mouse tracking to be immediately stopped and WEClick to return to its caller.

You should never call WEClick when the WE instance is inactive.

WEIdle

Call WEIdle when your application receives a null event to ensure a regular blinking of the caret.

pascal void WEIdle(long *maxSleep, WEHandle hWE);

Field descriptions

maxSleep Pointer to a long variable set to the maximum time (in ticks) that should be
allowed to elapse before the next call to WEIdle.

hWE The WE instance.

DESCRIPTION

WEIdle inverts the caret if the WE instance is active, the selection range is empty and if at least CaretTime (a system
global variable) ticks have elapsed since the last time the caret was inverted. MaxSleep is set to the amount of time
remaining before the caret must be inverted again to ensure a regular blinking. Pass NULL in this parameter if you don’t want
this value returned.

WEAdjustCursor

Call WEAdjustCursor periodically to give WASTE a chance to set the cursor when the mouse is within the view rectangle.

pascal Boolean WEAdjustCursor(Point mouseLoc, RgnHandle mouseRgn,
WEHandle hWE);

Field descriptions

mouseLoc The mouse location, in global coordinates.
mouseRgn Handle to a region within which the cursor is to retain its shape.
hWE The WE instance.

DESCRIPTION

WEAdjustCursor checks to see if the given mouse location is within the view rectangle of the specified WE instance. If
yes, it sets the cursor to an I-beam and returns TRUE; otherwise WEAdjustCursor does not set the cursor and it returns
FALSE. The mouseRgn parameter can be either NULL or a valid region handle. In the latter case, rgnHandle is
intersected with a region within which the cursor is to retain its current shape.

WEGetSelection

Returns the endpoint offsets of the current selection.

WASTE Documentation 16

pascal void WEGetSelection(long *selStart, long *selEnd, WEHandle hWE);

Field descriptions

selStart Pointer to a long variable set to the start of the selection range.
selEnd Pointer to a long variable set to the end of the selection range.
hWE The WE instance.

DESCRIPTION

WEGetSelection returns the offsets to the start and the end of the current selection range. SelStart is always set to a
value less than or equal to selEnd, regardless of which one is the anchor point.

WESetSelection

Use WESetSelection to set the selection range.

pascal void WESetSelection(long selStart, long selEnd, WEHandle hWE);

Field descriptions

selStart The byte offset to the anchor point.
selEnd The byte offset to the free endpoint.
hWE The WE instance.

DESCRIPTION

WESetSelection sets the selection range and redraws the highlighting appropriately. SelStart and selEnd are
pinned to the range 0..textLength and reordered if necessary, but selStart always becomes the new anchor point. If
auto scrolling is enabled, the text may be scrolled to make the free endpoint visible. WESetSelection works correctly
even if the WE instance is inactive and outline highlighting is enabled, but when the WE instance is active,
WESetSelection is optimized to highlight only the difference between the old and the new selection range.

EXAMPLES

/* selects the whole text */
WESetSelection(0, 0x7FFFFFFF, hWE);

/* displays the caret at the beginning of the text */
WESetSelection(0, 0, hWE);

/* selects the range 5 to 10; 10 becomes the new anchor point */
WESetSelection(10, 5, hWE);

WEInsert

Inserts the specified text at the insertion point.

pascal OSErr WEInsert(Ptr textPtr, long textLength, StScrpHandle hStyles,

WASTE Documentation 17
WEHandle hWE);

Field descriptions

textPtr Pointer to a text buffer.
textLength Size of the text buffer.
hStyles Handle to a style scrap (optional).
hWE The WE instance.

DESCRIPTION

WEInsert inserts the specified text at the insertion point (if the current selection range is not empty, it is replaced by the
inserted text). You can optionally specify style information accompanying the text by passing a standard TextEdit style scrap
in hStyles.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEDelete

Deletes the selection range.

pascal OSErr WEDelete(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WEDelete removes the text in the current selection range.

RESULT CODES

noErr 0 No error

WESetStyle

Use WESetStyle to modify the style attributes associated with the current selection range.

pascal OSErr WESetStyle(short mode, TextStyle *ts, WEHandle hWE);

Field descriptions

mode Set of bits determining which attributes are to be changed and how.
ts Pointer to a TextStyle record.
hWE The WE instance.

DESCRIPTION

WESetStyle applies the specified style attributes to the current selection range. The mode parameter is a

WASTE Documentation 18

interpreted as a set of bits specifying which attributes are to be changed and how.
If weDoAddSize is specified, the tsSize field of the ts record is added to the font sizes in the selection range, rather than
replacing them; the sum is pinned to the positive integer range.
The rules for applying QuickDraw styles (the tsFace field of the ts record) are rather complex: tsFace replaces the target
styles outright if it is zero (i.e., the empty set) or if weDoReplaceFace is specified in mode. Otherwise tsFace is
interpreted as a selector indicating which styles are to be altered — all other styles are left intact. What exactly happens to the
styles indicated in tsFace depends on whether weDoToggleFace is specified in mode or not. If weDoToggleFace is
specified, a style is turned off if it’s continuous over the selection range, else it is turned on. If weDoToggleFace is not
specified, the indicated styles are always turned on.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEUseText

Replaces the text in the specified WE instance with a given text handle.

pascal OSErr WEUseText(Handle hText, WEHandle hWE);

Field descriptions

hText Handle to the text.
hWE The WE instance.

DESCRIPTION

WEUseText replaces the text handle in the specified WE instance with the given handle. The original handle is released.
You tipically call WEUseText soon after creating a WE instance with WENew, possibly to restore text from a previously
saved file. WEUseText does not automatically recalculate line breaks or redraw the text: you must call WECalText
explicitly.

RESULT CODES

noErr 0 No error

WEUseStyleScrap

Applies the specified style information to the current selection range.

pascal OSErr WEUseStyleScrap(StScrpHandle hStyles, WEHandle hWE);

Field descriptions

hStyles Handle to a style scrap.
hWE The WE instance.

DESCRIPTION

WEUseStyleScrap applies the specified style scrap to the selection range.

WASTE Documentation 19

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECopy

Copies the selection range to the Clipboard.

pascal OSErr WECopy(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WECopy copies the text in the selection range and its associated style information to the desk scrap, as a standard
TEXT/styl pair. For a variety of reasons, you should exercise care when calling this function for more than 32K of text.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECut

Copies the selection range to the Clipboard and removes it from the text.

pascal OSErr WECut(WEHandle hWE);

Field descriptions

hWE The WE instance.

DESCRIPTION

WECut combines the functions of WECopy and WEDelete.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEPaste

Pastes the contents of the Clipboard at the insertion point.

pascal OSErr WEPaste(WEHandle hWE);

WASTE Documentation 20

Field descriptions

hWE The WE instance.

DESCRIPTION

WEPaste looks in the desk scrap for a TEXT item: if one is found, it is inserted into the text at the insertion point (if the
selection range is not empty, it is replaced by the pasted text). WEPaste takes into account the style information
accompanying the text, if present.

RESULT CODES

noErr 0 No error
noTypeErr -102 No text in the desk scrap
memFullErr -108 Out of memory

WEFeatureFlag

Use WEFeatureFlag to enable, disable and test miscellaneous features of a WE instance.

pascal short WEFeatureFlag(short feature, short action, WEHandle hWE);

Field descriptions

feature Identifies the feature being set or tested.
action Identifies the action being performed.
hWE The WE instance.

DESCRIPTION

Specify weBitSet, weBitClear or weBitTest to set, clear or just test the setting of the specified feature. In all three
cases, the old setting is returned. Features currently supported are automatic scrolling, outline highlighting and offscreen
drawing. WEFeatureFlag can also be used to temporarily disable automatic recalculation of line breaks during editing
operations. All features are initially set according to the flags parameter passed to WENew.

AUTOMATIC SCROLLING

When automatic scrolling is enabled, the destination rectangle is automatically scrolled to keep a particular text position
centered in the middle of the view rectangle. This position is normally the insertion point or, if the selection range is not
empty, the free endpoint of the range, but an input method may instruct WASTE to scroll a different range into view using an
appropriate Apple event. You can set up a callback routine if you want to be notified of implicit calls to WEScroll (see the
description of the WESetInfo routine). If this feature is disabled, only an explicit call to WEScroll can scroll the text.

OUTLINE HIGHLIGHTING

When outline highlighting is enabled, the selection range is framed with the highlight color while the WE instance is inactive.
When outline highlighting is disabled, no highlighting is applied to the text while the WE instance is inactive. Contrary to the
behavior of TextEdit, the caret is never drawn while the WE instance is inactive.

WASTE Documentation 21

OFFSCREEN DRAWING

When offscreen drawing is enabled, text is first drawn to an offscreen buffer and then copied to the screen when an editing
operation requires one or more lines to be redrawn. Since the text is always drawn in srcOr mode (to allow for character
glyphs superimposing one another), portions of the view rectangle would need to be erased before redrawing, possibly
resulting in a flicker effect. Offscreen drawing avoids this need and ensures smooth visual results. Offscreen drawing is not
used when WEUpdate is called with a non-NULL updateRgn parameter (since the area to redraw is assumed to have
already been erased anyway) or when not enough memory is available for the offscreen buffer. The offscreen buffer is
allocated dynamically (possibly from temporary memory) and is always made purgeable or altogether disposed of before
control is returned to the application.

INHIBITING LINE BREAK RECALCULATION

When the weFInhibitRecal bit is set, line breaks are not recalculated and text is not redrawn during editing operations.
In certain situations, for example when you have to apply a long sequence of editing operations to a WE instance, you can
achieve a significant performance boost by inhibiting line break recalculation before starting the sequence and doing a
complete recalculation (with WECalText) when you are finished.

WEGetInfo / WESetInfo

Retrieve and set miscellaneous information associated with a specified WE instance.

pascal OSErr WEGetInfo(OSType selector, void *info, WEHandle hWE);
pascal OSErr WESetInfo(OSType selector, const void *info, WEHandle hWE);

Field descriptions

selector Four-letter tag identifying the information being requested.
info Pointer to storage where the requested information is to be copied to or from.
hWE The WE instance.

DESCRIPTION

WEGetInfo and WESetInfo provide an extensible mechanism to retrieve and set internal fields of a WE instance without
knowledge of where these fields are actually stored. The currently defined fields are all 32-bit wide, but nothing prevents the
addition of fields of different sizes in a future release.
Here is a list of the selectors currently defined.

weClickLoop 'clik' Address of the click loop callback routine.
weRefCon 'refc' Reference constant for use by the client application.
wePort 'port' Pointer to the associated graphics port.
weScrollProc 'scrl' Address of scroll callback routine.
weText 'text' Handle to the text.
weTSMDocument 'tsmd' Associated TSM document ID.
weTSMPreUpdate 'pre ' Address of the TSM pre-update callback routine.
weTSMPostUpdate 'post' Address of the TSM post-update callback routine.

The fields specified by the callback selectors (weClickLoop, weScrollProc, weTSMPreUpdate and
weTSMPostUpdate) can be set to NULL (as they are initially) to indicate that no callback should be called.

WASTE Documentation 22

The click loop callback is very similar to its TextEdit counterpart (see the description of the WEClick routine) and the TSM
callbacks provide functionality analogous to that offered by the TextEdit TSM extension bundled with KanjiTalk 7.1. The
scroll callback, on the other hand, is specific to WASTE. It is called whenever the destination rectangle is scrolled
automatically as the result of some editing operation. This callback is not invoked when auto scrolling is disabled or when
WEScroll is called directly by your application.

EXAMPLES

/* install a click loop callback routine */

WEClickLoopProcPtr clickLoop;
OSErr err;

clickLoop = &myClickLoop;
err = WESetInfo(weClickLoop, (void *) &clickLoop, hWE);

RESULT CODES

noErr 0 No error
paramErr -50 Invalid selector

WASTE Documentation 23

Distribution & Licensing

You can use the WASTE library in any way you like in freeware, shareware and commercial programs, subject to the
following conditions:

• I, Marco Piovanelli, retain all rights on the library and on the original source code.
• You expressly acknowledge and agree that use of this software is at your sole risk. This software and the related
documentation are provided “AS IS” and without warranty of any kind, express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Under no circumstances including negligence,
shall I be liable for any incidental, special or consequential damages that result from the use or inability to use the software or
related documentation, even if advised of the possibility of such damages.
• You give me credit in your program’s about box and/or in some other suitable place (something like “WASTE text engine ©
1993-1994 Marco Piovanelli” would be OK).
• You notify me that you’re using my code. This allows me to send updates to “registered” users and to compile a list of users
of WASTE.
• You send me a complimentary copy of the finished product, either electronically or by postal mail. For shareware and
commercial programs, this means that I get a registered copy. This item does not apply to in-house applications.

The WASTE 1.0a4 package (but not earlier versions) can be freely distributed in electronic form on computer networks. It
cannot, however, be distributed by other means (such as in printed form, on magnetic media or on CD-ROM) without
permission from the author. Permission for distribution on the Info-Mac CD-ROM is granted to Pacific HiTech, Inc.

The latest version of the WASTE package can be found on the Internet at the following site:

Host: ghost.dsi.unimi.it (149.132.1.2)
Path: pub2/papers/piovanel/

Acknowledgements

I’d like to thank the following people for their help and inspiration:

• Rick Giles, early adopter of WASTE.
• Ari Halberstadt, for his insightful comments and suggestions.
• Matsubayashi Kohji, for his careful explanation of the Japanese way of using a Macintosh.
• René G.A. Ros, for all his generous aid.
• Adrian Le Hanne, for indirectly suggesting the signature of the WASTE Demo.
• Steven Stapleton and Andrew M. McKenzie, for being there.

