
WASTE Documentation 1

WASTE DOCUMENTATION

Written by: Marco Piovanelli (piovanel@dsi.unimi.it)
Version: 1.0a4 (May 1994)

Copyright © 1994 Marco Piovanelli

This document describes WASTE, a WorldScript™-Aware Styled Text Engine for the Macintosh
which can be used as the basis for simple to moderately complex applications dealing with styled
text.
WASTE has been designed from the very beginning to be compatible with TextEdit and TextEdit-
based applications, although not everything you can do with TextEdit can be done with WASTE and
vice versa.
The main features of WASTE are:

• Memory-based editor, with no limit imposed on text size.
• Requires System 7.0 or newer.
• WorldScript™-aware, with one major exception: bidirectional scripts (Arabic and Hebrew) are
not currently supported.
• Allows full justification of text.
• Uses offscreen graphics worlds to achieve smooth text redrawing.
• Built-in support for inline input.

This document assumes that you are familiar with the TextEdit model and with text handling on
the Macintosh in general, including the Script Manager and the Text Services Manager.

WASTE Documentation 2

A Brief Overview of WASTE
This section gives you a general overview of WASTE and of what it can do for your application.
Since WASTE is so similar to TextEdit, a special emphasis is given to those areas in which the two
models diverge.

WASTE data structures

WASTE header files contain very few type declarations, since all internal data structures are
private and cannot be accessed directly. There is no type declaration for the internal format of a
WE instance, the WASTE conterpart to a TextEdit edit record. Instead you refer to a WE instance
via an opaque handle. This allows future versions of WASTE to add new functionality and new data
structures painlessly, without breaking existing applications.
You should make no assumptions as to how style and line-layout information is represented
internally, but you can count on the text being stored as a single relocatable block, to which you
can obtain a handle. This maximizes compatibility with existing TextEdit-based applications which
rely heavily on this assumption.

Long Coordinates

To allow for text taller than 32,767 pixels (a serious limitation of the TextEdit model), WASTE uses
long (32-bit) coordinates to identify positions within the destination rectangle. This should not
constitute a problem for your application, but be careful if you use a vertical scroll bar!
WASTE comes with an extensive set of utility functions to deal with long coordinates.

How WASTE supports inline input

Support for inline input is built in WASTE so that your application can be friendly to users of
double-byte script systems with a minimal contribution of code.
Starting from version 7.1 of the system software, applications interface to inline input methods
through the Text Services Manager (TSM). TSM routines for use by applications can be roughly
divided into two sets: those which refer to TSM documents and those who don’t. WASTE is
designed to handle internally all routines from the first set, as a TSM document record is
automatically associated with each WE instance. Furthermore WASTE implements all required
Apple event handlers and is responsible for properly highlighting ranges in the active input area.
Your application retains responsibility for a set of just four calls, namely
InitTSMAwareApplication, CloseTSMAwareApplication, TSMEvent and SetTSMCursor.
Your application may optionally install callback routines to monitor calls to the main TSM Apple
event handler (kUpdateActiveInputArea).

Where WASTE differs from the TextEdit model

Some subtle and not-so-subtle differences between WASTE and TextEdit are listed below. Most of
them are deliberate design choices.

• WASTE keeps track internally of whether the anchor point of the selection range is at the
beginning or

WASTE Documentation 3
at the end; when extending a selection (either by shift-clicking or by using shift + arrow keys),
what moves is the free endpoint of the selection, but never the anchor point. Your application can
control which boundary of the selection range is treated as the anchor point using WESetSelection
as described in the reference section.

• To select a range of words, you can double click the first word, then shift-click the last word. The
first word clicked becomes the anchor word of the selection range. In the same way, you can
select a range of lines by triple clicking the first line and shift-clicking the last one, and the first
line clicked becomes the anchor line of the selection range.

• Clicking at the end of a line positions the caret past the last non-blank character; any trailing
blanks are ignored. The idea is that this behavior avoids the infamous end-of-line bug that affects
TextEdit and even some well known word processors, whereby clicking at the end of a line and
hitting the right arrow key moves the cursor before the second character of the following line.

• WASTE never draws anything outside the destination rectangle, while TextEdit may highlight
portions of the view rectangle outside the destination rectangle.

• TextEdit’s autoscrolling works on a minimum effort basis (scroll as much as necessary to bring
the selection into view, but no more). On the other hand, WASTE tries to keep the selection
centered in the middle of the view rectangle.

WASTE Documentation 4
WASTE Reference

This sections describes all WASTE routines and their parameters in depth.

WEInstallTSMHandlers

Installs Apple event handlers for supporting inline input in the current application’s Apple event
dispatch table.

pascal OSErr WEInstallTSMHandlers(void);

DESCRIPTION

WEInstallTSMHandlers installs the Apple event handlers required for supporting inline input in
the current application’s Apple event dispatch table. You should call this function if your
application is TSM aware.
After the Apple event handlers have been installed, input methods can communicate with a WE
instance without the intervention of your application.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WENew

Creates a new WE instance and returns a handle to it.

pascal OSErr WENew(const LongRect *destRect, const LongRect *viewRect,
short flags, WEHandle *hWE);

Field descriptions
destRect The initial destination rectangle.
viewRect The initial view rectangle.
flags Miscellaneous flags.
hWE Pointer to a variable of type WEHandle.

DESCRIPTION

WENew creates a complete text editing environment associated with the current graphics port. You
specify the initial destination and view rectangles in the local coordinates of the current graphics
port, expressed in long coordinates. The value of destRect.bottom is immaterial, since it is
dynamically updated whenever line breaks are recalculated so that (destRect.bottom -
destRect.top) is always equal to the total pixel height of the text, including any blank lines at its
end.
The initial style attributes (font, size, QuickDraw styles and color) are copied from the current
graphics port. The initial alignment style is weFlushDefault. The initial activation state is
inactive.
The flags parameter allows you to enable certain features on creation instead of calling
WEFeatureFlag. One of the flags, weDoUseTempMem, instructs WENew to allocate the main data

WASTE Documentation 5
structures preferably from temporary memory and is only meaningful when passed to WENew (it
does nothing when passed to WEFeatureFlag).
If the Text Services Manager is available and the client application is TSM-aware (i.e.,
InitTSMAwareApplication has been called successfully), WENew automatically associates the new
instance with a TSM document record.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEDispose

Disposes of a WE instance and of all associated data structures.

pascal void WEDispose(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEDispose releases all memory associated with a given WE instance, including the text handle. If
you want to retain the text, you can either clone the text handle using HandToHand or call
WESetInfo with selector set to weText and *info set to 0 immediately before calling WEDispose.

WEGetDestRect / WESetDestRect / WEGetViewRect / WESetViewRect

Get and set the values of the destination rectangle and the view rectangle.

pascal void WEGetDestRect(LongRect *destRect, WEHandle hWE);
pascal void WESetDestRect(const LongRect *destRect, WEHandle hWE);
pascal void WEGetViewRect(LongRect *viewRect, WEHandle hWE);
pascal void WESetViewRect(const LongRect *viewRect, WEHandle hWE);

Field descriptions
destRect Pointer to the destination rectangle.
viewRect Pointer to the view rectangle.
hWE The WE instance.

DESCRIPTION

These functions allow you to get and set the destination rectangle and the view rectangle
associated with the specified WE instance. The rectangles are in local coordinates. As in the
TextEdit model, the destination rectangle is the area in which the text is drawn (the width of this
rectangle specifies the line width used to wrap the text), while the view rectangle is the portion in
which the text is actually displayed. All drawing is clipped to the intersection of these two
rectangles.
When the text is scrolled, the destination rectangle is automatically offset by the scrolling amount;
the view rectangle is never changed save by a call to WESetViewRect. The only reason for using
long coordinates is to allow for text taller than 32,767 pixels when scrolling, but both the view
rectangle and the

WASTE Documentation 6
horizontal coordinates of the destination rectangle must always be limited to the QuickDraw range
(-32767 to 32767).
A call to WESetDestRect which alters the line width does not automatically trigger the
recalculation of line breaks: you must call WECalText.

WEGetAlignment / WESetAlignment

Get and set the alignment style associated with a given WE instance.

enum {
weFlushLeft = -2,
weFlushRight,
weFlushDefault,
weCenter,
weJustify

}

pascal char WEGetAlignment(WEHandle hWE);
pascal void WESetAlignment(char alignment, WEHandle hWE);

Field descriptions
alignment The alignment style.
hWE The WE instance.

DESCRIPTION

Use WEGetAlignment and WESetAlignment to get and set the alignment style associated with the
specified WE instance. The alignment style applies to the whole text and can be one of the five
values listed above.
WeFlushDefault (the default value) aligns the text according to the current setting of the system
global variable SysDirection (previously known as TESysJust): if you change the value of
SysDirection, you should force a redraw of all WE instances set to this alignment style.
WeJustify aligns the text in the destination rectangle to both left and right margins. The specific
way this effect is achieved is script-dependent.

WEGetText

Returns a handle to the text associated with a given WE instance.

pascal Handle WEGetText(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEGetText returns a handle to the text associated with the specified WE instance; this handle
contains the raw character codes without any formatting information (this information is stored
elsewhere).
This handle belongs to the WE instance; you should not destroy it or modify it in any way.

WASTE Documentation 7

WEGetTextLength

Returns the length of the text, in bytes.

pascal long WEGetTextLength(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEGetTextLength returns the length of the text, in bytes, initially zero.

WEGetChar

Returns the character code at a given byte offset.

pascal short WEGetChar(long offset, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION

WEGetChar returns the character code at a given offset inside the text handle associated with the
specified WE instance. This routine always returns byte values, so when dealing with double-byte
characters, it returns only one half of the character. Use WECharByte to determine the byte type of
the character code at a given offset. If an invalid offset is specified, WEGetChar returns zero.

WECharByte

Returns the byte type (smSingleByte, smFirstByte or smLastByte) of the character code at the
specified offset.

pascal short WECharByte(long offset, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION

WECharByte returns the byte type of the character code at a given offset inside the text handle
associated with the specified WE instance. If an invalid offset is specified, WECharByte returns
smSingleByte.

WECharType

WASTE Documentation 8

Returns the character type of the character code at the specified offset.

pascal short WECharType(long offset, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION

WECharType returns the character type of character code at a given offset inside the text handle
associated with the specified WE instance. If an invalid offset is specified, WECharType returns
zero.

WEGetRunInfo

Returns style information associated with the text run containing the specified offset.

typedef struct WERunInfo {
long runStart;
long runEnd;
short runHeight;
short runAscent;
TextStyle runStyle;

} WERunInfo;

pascal void WEGetRunInfo(long offset, WERunInfo *runInfo, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
runInfo Pointer to a record where the requested information is returned.
hWE The WE instance.

DESCRIPTION

WEGetRunInfo returns a WERunInfo record which describes the style attributes associated with the
style run the specified offset belongs to. This record specifies the boundaries of the style run, font
metrics information and style attributes proper. When called for the last style run in the text,
WEGetRunInfo returns textLength + 1 in runEnd, instead of textLength.

WEContinuousStyle

Determines which text attributes are continuous over the current selection range.

pascal Boolean WEContinuousStyle(short *mode, TextStyle *ts, WEHandle hWE);

Field descriptions
mode Pointer to a selector. On input, the selector specifies the attributes to test.

On output, the selector specifies the attributes continuous over the selection range.
ts Pointer to a TextStyle record set to the continuous attributes.

WASTE Documentation 9
hWE The WE instance.

DESCRIPTION

Call WEContinuousStyle to determine whether a given set of text attributes is continuous over the
selection range. On input, you specify in mode which attributes are to be tested for
continuousness. On output, mode specifies which ones were found to be continuous over the
current selection range and the corresponding fields of ts are set to the continuous attributes.
The function result is TRUE if all tested attributes are continuous, FALSE otherwise.
On output, the weDoFace bit is set in mode if at least one QuickDraw style is continuous over the
selection range: in this case ts.tsFace specifies only the continuous styles. If weDoFace is set and
ts.tsFace is zero (i.e., the empty set), then the whole selection range is plain text.
If the selection range is empty, the returned attributes are copied from an internal null style
record which holds the styles to be applied to the next character typed.
If WEContinuousStyle detects that the keyboard script has changed since the null style record was
last updated, it changes the font in the null style record to match the new keyboard script. The
new font is searched among the fonts preceding the insertion point; if none is found, the default
application font for the keyboard script is used.

EXAMPLES

short mode;
TextStyle ts;

mode = weDoAll; // check all attributes
WEContinuousStyle(&mode, &ts, hWE); // ignore function result

if (mode & weDoFont)
MyCheckFontMenu(ts.tsFont);

if (mode & weDoSize)
MyCheckSizeMenu(ts.tsSize);

if (mode & weDoFace)
MyCheckStyleMenu(ts.tsFace);

if (mode & weDoColor)
MyCheckColorMenu(&ts.tsColor);

WECopyRange

Makes a copy of the text and/or the styles in the specified range.

pascal OSErr WECopyRange(long rangeStart, long rangeEnd, Handle hText,
StScrpHandle hStyles, WEHandle hWE);

Field descriptions
rangeStart Offset to the beginning of the range.
rangeEnd Offset to the end of the range.
hText Handle to a relocatable block where a copy of the text is returned.

WASTE Documentation 10
hStyles Handle to a relocatable block where a copy of the styles is returned.
hWE The WE instance.

DESCRIPTION

WECopyRange makes a copy of the text and/or the style information in the specified range. You pass
valid handles in hText and hStyles and these handles are resized appropriately; you can also pass
NULL in either parameter if you don’t want the corresponding information returned. The style
information is returned in the standard TextEdit style scrap format (the same format used for the
styl Clipboard data type). Be aware that while this format is very simple to use, it is also very
inefficient space-wise and it can take up a lot of memory. Furthermore, if there are more than
32,767 style runs in the specified range, the scrpNStyles field of the style scrap will contain
invalid information.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECountLines

Returns the number of lines.

pascal long WECountLines(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WECountLines returns the number of lines of text associated with the specified WE instance,
initially one. If the last character in the text is a carriage return (ASCII 13), the last line is not
taken into account by WECountLines.

WEGetHeight

Returns the cumulative pixel height of a given line range.

pascal long WEGetHeight(long startLine, long endLine, WEHandle hWE);

Field descriptions
startLine Index to the first line in the range.
endLine Index to the last line in the range.
hWE The WE instance.

DESCRIPTION

WEGetHeight returns the cumulative pixel height of the specified line range. The startLine and
endLine parameters specify positions between lines (just as byte offsets specify positions between
characters): 0 specifies the top of the destination rectangle, 1 specifies the position between the
first and the second line, etc. Alternatively, you can think of startLine and endLine as line indices
(the first line

WASTE Documentation 11
being line zero), but in this case keep in mind that WEGetHeight returns the pixel height from
startLine included to endLine excluded, while the TextEdit routine TEGetHeight includes both
lines in the computation. StartLine and endLine are pinned to the range 0..nLines and
reordered if necessary. If the last character in the text is a carriage return (ASCII 13), the height
of the last line is not taken into account by WEGetHeight. The data structures used by WASTE
make WEGetHeight a cheap call (much faster then TEGetHeight when endLine - startLine is large).

WECalText

Recalculates line breaks and other data structures used internally to keep track of line layout for
the whole text.

pascal OSErr WECalText(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WECalText recalculates line breaks and other data structures related to line layout for the whole
text. You normally don’t need to call this function during normal editing operations since WASTE
performs all the necessary recalculations automatically. You do need to call WECalText, however, if
you called WEUseText to completely replace the text or if you called some editing routines with
automatic recalculation turned off (see WEFeatureFlag for details on how to disable automatic
recalculation). WECalText is an expensive call which can easily take several seconds to complete,
so use it sparingly.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEUpdate

Call WEUpdate in response to an update event in the view rectangle.

pascal void WEUpdate(RgnHandle updateRgn, WEHandle hWE);

Field descriptions
updateRgn Handle to the region to redraw, in local coordinates.
hWE The WE instance.

DESCRIPTION

WEUpdate draws the portion of text specified by updateRgn. You tipically call this function after
getting an update event in the view rectangle. Be sure to erase the update area to the background
color before calling WEUpdate, otherwise the text may not be redrawn correctly.
If you pass NULL in updateRgn, the whole view rectangle is erased and redrawn.

SPECIAL CONSIDERATIONS

WASTE Documentation 12

If you use WEUpdate within a standard printing loop for imaging the text to a printer, be sure to
turn off offscreen drawing, otherwise the QuickDraw bottlenecks set up for printing will only
intercept _StdBits calls instead of _StdText calls, with possible ill effects on print quality.

WEActivate

Call WEActivate when the window that owns the WE instance receives an activate event.

pascal void WEActivate(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEActivate marks the specified WE instance as active and redraws the current selection range
accordingly. If a TSM document record is associated with the WE instance, WEActivate notifies
the Text Services Manager of the change. You should call WEActivate before calling WEClick or
WEKey; otherwise the selection range may not be drawn correctly.

WEDeactivate

Call WEDeactivate when the window that owns the WE instance receives a deactivate event.

pascal void WEDeactivate(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEDeactivate marks the specified WE instance as inactive and redraws the current selection
range accordingly. If a TSM document record is associated with the WE instance, WEDeactivate
notifies the Text Services Manager of the change.

WEScroll

Call WEScroll to scroll the text within the view rectangle by a given amount of pixels.

pascal void WEScroll(long hOffset, long vOffset, WEHandle hWE);

Field descriptions
hOffset Amount to scroll horizontally, in pixels.
vOffset Amount to scroll vertically, in pixels.
hWE The WE instance.

DESCRIPTION

WASTE Documentation 13
WEScroll offsets the destination rectangle by the specified amount of pixels, horizontally and/or
vertically, and it updates the text in the view rectangle to reflect the change. Positive values of
hOffset move the text to the right. Positive values of vOffset move the text down.
WEScroll may be called internally by other WASTE routines if you enabled the auto scrolling
feature: when this happens, the scroll callback routine (see the description of the WESetInfo
routine), if present, is invoked. The scroll callback is not invoked, however, when you call
WEScroll directly.

WESelView

Call WESelView to ensure that the current selection range is visible.

pascal void WESelView(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WESelView checks to see if the current selection range (specifically, the free endpoint of the
selection range) is within the view rectangle. If it isn’t, WESelView scrolls the text to show the
selection range, trying to center it in the middle of the view rectangle.
If automatic scrolling is disabled (see the description of the WEFeatureFlag routine), WESelView
has no effect.

WEStopInlineSession

WEStopInlineSession stops the ongoing inline input session (if any) and causes all unconfirmed
text in the active input area to be confirmed.

pascal void WEStopInlineSession(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEStopInlineSession terminates the ongoing input session (if any) by calling the TSM function
FixTSMDocument, which in turn calls a component function in the current input method, which
finally results in an Apple event being sent to the specified WE instance to close the active input
area. If the Text Services Manager isn’t available, nothing happens.

WEKey

Call WEKey when you receive a keyDown or autoKey event directed to the window that owns a given
WE instance.

pascal void WEKey(short key, short modifiers, WEHandle hWE);

WASTE Documentation 14
Field descriptions
key The character code.
modifiers The modifiers field of the event record.
hWE The WE instance.

DESCRIPTION

WEKey inserts the specified character at the insertion point. If the current selection is not empty, it
is replaced by the new character.
If key is the backspace character, WEKey deletes the character preceding the insertion point or, if
the selection range is not empty, it deletes the current selection.
If key is an arrow key, WEKey moves the insertion point accordingly or, if the selection range is not
empty, it collapses the current selection to one of its endpoints. The modifiers parameter is taken
into account when handling arrow keys: currently the only supported modifier is the shift key,
which can be used to extend or shrink the selection range.
If a double-byte script system is installed and key is the first half of a double-byte character, key is
not immediately inserted into the text, but rather it is cached internally. When the second byte
arrives, the whole character is inserted.
Backspace deletes characters, not bytes. Be aware of this if you want to implement an Undo
feature. Also, the left and right arrow keys move backwards and forward by whole characters, not
bytes.

WEClick

Call WEClick in response to a mouse-down event in the view rectangle.

pascal void WEClick(Point hitPt, short modifiers, long clickTime,
WEHandle hWE);

Field descriptions
hitPt The hit point in local coordinates.
modifiers The modifiers field of the event record.
clickTime The when field of the event record.
hWE The WE instance to activate.

DESCRIPTION

WEClick handles key-down events directed to the view rectangle of the WE instance, retaining
control until the mouse button is released. The current selection range is continuously modified as
the mouse moves and the highlighting is redrawn accordingly.
If the shift key wasn’t held down, the hit point becomes the new anchor point of the selection
range while the position where the mouse button is released becomes the new free endpoint. If
the shift key was held down, the anchor point is not changed, but the free endpoint can be moved.
A double-click selects a word, and dragging the mouse or shift-clicking afterwards extends or
shrinks the selection word by word. Triple-clicks do the same, but this time line by line.
You can install a callback routine which is called repeatedly while the mouse is being tracked by
WEClick: call WESetInfo with selector set to weClickLoop and *info set to the address of your
callback routine.
Your callback should be a function of type WEClickLoopProcPtr, declared as follows:

pascal Boolean MyClickLoop(WEHandle hWE);

WASTE Documentation 15

The hWE parameter contains the WE instance where mouse tracking is taking place. Your callback
routines should normally return true. Returning false causes mouse tracking to be immediately
stopped and WEClick to return to its caller.
You should never call WEClick when the WE instance is inactive.

WEIdle

Call WEIdle when your application receives a null event to ensure a regular blinking of the caret.

pascal void WEIdle(long *maxSleep, WEHandle hWE);

Field descriptions
maxSleep Pointer to a long variable set to the maximum time (in ticks) that should be

allowed to elapse before the next call to WEIdle.
hWE The WE instance.

DESCRIPTION

WEIdle inverts the caret if the WE instance is active, the selection range is empty and if at least
CaretTime (a system global variable) ticks have elapsed since the last time the caret was inverted.
MaxSleep is set to the amount of time remaining before the caret must be inverted again to ensure
a regular blinking. Pass NULL in this parameter if you don’t want this value returned.

WEAdjustCursor

Call WEAdjustCursor periodically to give WASTE a chance to set the cursor when the mouse is
within the view rectangle.

pascal Boolean WEAdjustCursor(Point mouseLoc, RgnHandle mouseRgn,
WEHandle hWE);

Field descriptions
mouseLoc The mouse location, in global coordinates.
mouseRgn Handle to a region within which the cursor is to retain its shape.
hWE The WE instance.

DESCRIPTION

WEAdjustCursor checks to see if the given mouse location is within the view rectangle of the
specified WE instance. If yes, it sets the cursor to an I-beam and returns TRUE; otherwise
WEAdjustCursor does not set the cursor and it returns FALSE. The mouseRgn parameter can be
either NULL or a valid region handle. In the latter case, rgnHandle is intersected with a region
within which the cursor is to retain its current shape.

WEGetSelection

Returns the endpoint offsets of the current selection.

WASTE Documentation 16

pascal void WEGetSelection(long *selStart, long *selEnd, WEHandle hWE);

Field descriptions
selStart Pointer to a long variable set to the start of the selection range.
selEnd Pointer to a long variable set to the end of the selection range.
hWE The WE instance.

DESCRIPTION

WEGetSelection returns the offsets to the start and the end of the current selection range.
SelStart is always set to a value less than or equal to selEnd, regardless of which one is the
anchor point.

WESetSelection

Use WESetSelection to set the selection range.

pascal void WESetSelection(long selStart, long selEnd, WEHandle hWE);

Field descriptions
selStart The byte offset to the anchor point.
selEnd The byte offset to the free endpoint.
hWE The WE instance.

DESCRIPTION

WESetSelection sets the selection range and redraws the highlighting appropriately. SelStart
and selEnd are pinned to the range 0..textLength and reordered if necessary, but selStart
always becomes the new anchor point. If auto scrolling is enabled, the text may be scrolled to
make the free endpoint visible. WESetSelection works correctly even if the WE instance is
inactive and outline highlighting is enabled, but when the WE instance is active, WESetSelection
is optimized to highlight only the difference between the old and the new selection range.

EXAMPLES

/* selects the whole text */
WESetSelection(0, 0x7FFFFFFF, hWE);

/* displays the caret at the beginning of the text */
WESetSelection(0, 0, hWE);

/* selects the range 5 to 10; 10 becomes the new anchor point */
WESetSelection(10, 5, hWE);

WEInsert

Inserts the specified text at the insertion point.

pascal OSErr WEInsert(Ptr textPtr, long textLength, StScrpHandle hStyles,

WASTE Documentation 17
WEHandle hWE);

Field descriptions
textPtr Pointer to a text buffer.
textLength Size of the text buffer.
hStyles Handle to a style scrap (optional).
hWE The WE instance.

DESCRIPTION

WEInsert inserts the specified text at the insertion point (if the current selection range is not
empty, it is replaced by the inserted text). You can optionally specify style information
accompanying the text by passing a standard TextEdit style scrap in hStyles.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEDelete

Deletes the selection range.

pascal OSErr WEDelete(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WEDelete removes the text in the current selection range.

RESULT CODES

noErr 0 No error

WESetStyle

Use WESetStyle to modify the style attributes associated with the current selection range.

pascal OSErr WESetStyle(short mode, TextStyle *ts, WEHandle hWE);

Field descriptions
mode Set of bits determining which attributes are to be changed and how.
ts Pointer to a TextStyle record.
hWE The WE instance.

DESCRIPTION

WESetStyle applies the specified style attributes to the current selection range. The mode
parameter is a

WASTE Documentation 18
interpreted as a set of bits specifying which attributes are to be changed and how.
If weDoAddSize is specified, the tsSize field of the ts record is added to the font sizes in the
selection range, rather than replacing them; the sum is pinned to the positive integer range.
The rules for applying QuickDraw styles (the tsFace field of the ts record) are rather complex:
tsFace replaces the target styles outright if it is zero (i.e., the empty set) or if weDoReplaceFace is
specified in mode. Otherwise tsFace is interpreted as a selector indicating which styles are to be
altered — all other styles are left intact. What exactly happens to the styles indicated in tsFace
depends on whether weDoToggleFace is specified in mode or not. If weDoToggleFace is specified, a
style is turned off if it’s continuous over the selection range, else it is turned on. If
weDoToggleFace is not specified, the indicated styles are always turned on.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEUseText

Replaces the text in the specified WE instance with a given text handle.

pascal OSErr WEUseText(Handle hText, WEHandle hWE);

Field descriptions
hText Handle to the text.
hWE The WE instance.

DESCRIPTION

WEUseText replaces the text handle in the specified WE instance with the given handle. The
original handle is released. You tipically call WEUseText soon after creating a WE instance with
WENew, possibly to restore text from a previously saved file. WEUseText does not automatically
recalculate line breaks or redraw the text: you must call WECalText explicitly.

RESULT CODES

noErr 0 No error

WEUseStyleScrap

Applies the specified style information to the current selection range.

pascal OSErr WEUseStyleScrap(StScrpHandle hStyles, WEHandle hWE);

Field descriptions
hStyles Handle to a style scrap.
hWE The WE instance.

DESCRIPTION

WEUseStyleScrap applies the specified style scrap to the selection range.

WASTE Documentation 19

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECopy

Copies the selection range to the Clipboard.

pascal OSErr WECopy(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WECopy copies the text in the selection range and its associated style information to the desk scrap,
as a standard TEXT/styl pair. For a variety of reasons, you should exercise care when calling this
function for more than 32K of text.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECut

Copies the selection range to the Clipboard and removes it from the text.

pascal OSErr WECut(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WECut combines the functions of WECopy and WEDelete.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEPaste

Pastes the contents of the Clipboard at the insertion point.

pascal OSErr WEPaste(WEHandle hWE);

WASTE Documentation 20

Field descriptions
hWE The WE instance.

DESCRIPTION

WEPaste looks in the desk scrap for a TEXT item: if one is found, it is inserted into the text at the
insertion point (if the selection range is not empty, it is replaced by the pasted text). WEPaste
takes into account the style information accompanying the text, if present.

RESULT CODES

noErr 0 No error
noTypeErr -102 No text in the desk scrap
memFullErr -108 Out of memory

WEFeatureFlag

Use WEFeatureFlag to enable, disable and test miscellaneous features of a WE instance.

pascal short WEFeatureFlag(short feature, short action, WEHandle hWE);

Field descriptions
feature Identifies the feature being set or tested.
action Identifies the action being performed.
hWE The WE instance.

DESCRIPTION

Specify weBitSet, weBitClear or weBitTest to set, clear or just test the setting of the specified
feature. In all three cases, the old setting is returned. Features currently supported are automatic
scrolling, outline highlighting and offscreen drawing. WEFeatureFlag can also be used to
temporarily disable automatic recalculation of line breaks during editing operations. All features
are initially set according to the flags parameter passed to WENew.

AUTOMATIC SCROLLING

When automatic scrolling is enabled, the destination rectangle is automatically scrolled to keep a
particular text position centered in the middle of the view rectangle. This position is normally the
insertion point or, if the selection range is not empty, the free endpoint of the range, but an input
method may instruct WASTE to scroll a different range into view using an appropriate Apple event.
You can set up a callback routine if you want to be notified of implicit calls to WEScroll (see the
description of the WESetInfo routine). If this feature is disabled, only an explicit call to WEScroll
can scroll the text.

OUTLINE HIGHLIGHTING

When outline highlighting is enabled, the selection range is framed with the highlight color while
the WE instance is inactive. When outline highlighting is disabled, no highlighting is applied to the
text while the WE instance is inactive. Contrary to the behavior of TextEdit, the caret is never
drawn while the WE instance is inactive.

WASTE Documentation 21

OFFSCREEN DRAWING

When offscreen drawing is enabled, text is first drawn to an offscreen buffer and then copied to the
screen when an editing operation requires one or more lines to be redrawn. Since the text is
always drawn in srcOr mode (to allow for character glyphs superimposing one another), portions
of the view rectangle would need to be erased before redrawing, possibly resulting in a flicker
effect. Offscreen drawing avoids this need and ensures smooth visual results. Offscreen drawing
is not used when WEUpdate is called with a non-NULL updateRgn parameter (since the area to
redraw is assumed to have already been erased anyway) or when not enough memory is available
for the offscreen buffer. The offscreen buffer is allocated dynamically (possibly from temporary
memory) and is always made purgeable or altogether disposed of before control is returned to the
application.

INHIBITING LINE BREAK RECALCULATION

When the weFInhibitRecal bit is set, line breaks are not recalculated and text is not redrawn
during editing operations. In certain situations, for example when you have to apply a long
sequence of editing operations to a WE instance, you can achieve a significant performance boost
by inhibiting line break recalculation before starting the sequence and doing a complete
recalculation (with WECalText) when you are finished.

WEGetInfo / WESetInfo

Retrieve and set miscellaneous information associated with a specified WE instance.

pascal OSErr WEGetInfo(OSType selector, void *info, WEHandle hWE);
pascal OSErr WESetInfo(OSType selector, const void *info, WEHandle hWE);

Field descriptions
selector Four-letter tag identifying the information being requested.
info Pointer to storage where the requested information is to be copied to or from.
hWE The WE instance.

DESCRIPTION

WEGetInfo and WESetInfo provide an extensible mechanism to retrieve and set internal fields of a
WE instance without knowledge of where these fields are actually stored. The currently defined
fields are all 32-bit wide, but nothing prevents the addition of fields of different sizes in a future
release.
Here is a list of the selectors currently defined.

weClickLoop 'clik' Address of the click loop callback routine.
weRefCon 'refc' Reference constant for use by the client application.
wePort 'port' Pointer to the associated graphics port.
weScrollProc 'scrl' Address of scroll callback routine.
weText 'text' Handle to the text.
weTSMDocument 'tsmd' Associated TSM document ID.
weTSMPreUpdate 'pre ' Address of the TSM pre-update callback routine.
weTSMPostUpdate 'post' Address of the TSM post-update callback routine.

The fields specified by the callback selectors (weClickLoop, weScrollProc, weTSMPreUpdate and
weTSMPostUpdate) can be set to NULL (as they are initially) to indicate that no callback should be

WASTE Documentation 22
called.

WASTE Documentation 23
The click loop callback is very similar to its TextEdit counterpart (see the description of the
WEClick routine) and the TSM callbacks provide functionality analogous to that offered by the
TextEdit TSM extension bundled with KanjiTalk 7.1. The scroll callback, on the other hand, is
specific to WASTE. It is called whenever the destination rectangle is scrolled automatically as the
result of some editing operation. This callback is not invoked when auto scrolling is disabled or
when WEScroll is called directly by your application.

EXAMPLES

/* install a click loop callback routine */

WEClickLoopProcPtr clickLoop;
OSErr err;

clickLoop = &myClickLoop;
err = WESetInfo(weClickLoop, (void *) &clickLoop, hWE);

RESULT CODES

noErr 0 No error
paramErr -50 Invalid selector

WASTE Documentation 24
Distribution & Licensing

You can use the WASTE library in any way you like in freeware, shareware and commercial
programs, subject to the following conditions:

• I, Marco Piovanelli, retain all rights on the library and on the original source code.
• You expressly acknowledge and agree that use of this software is at your sole risk. This software
and the related documentation are provided “AS IS” and without warranty of any kind, express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. Under no circumstances including negligence, shall I be liable for any
incidental, special or consequential damages that result from the use or inability to use the
software or related documentation, even if advised of the possibility of such damages.
• You give me credit in your program’s about box and/or in some other suitable place (something
like “WASTE text engine © 1993-1994 Marco Piovanelli” would be OK).
• You notify me that you’re using my code. This allows me to send updates to “registered” users
and to compile a list of users of WASTE.
• You send me a complimentary copy of the finished product, either electronically or by postal
mail. For shareware and commercial programs, this means that I get a registered copy. This item
does not apply to in-house applications.

The WASTE 1.0a4 package (but not earlier versions) can be freely distributed in electronic form on
computer networks. It cannot, however, be distributed by other means (such as in printed form, on
magnetic media or on CD-ROM) without permission from the author. Permission for distribution
on the Info-Mac CD-ROM is granted to Pacific HiTech, Inc.

The latest version of the WASTE package can be found on the Internet at the following site:

Host: ghost.dsi.unimi.it (149.132.1.2)
Path: pub2/papers/piovanel/

Acknowledgements
I’d like to thank the following people for their help and inspiration:

• Rick Giles, early adopter of WASTE.
• Ari Halberstadt, for his insightful comments and suggestions.
• Matsubayashi Kohji, for his careful explanation of the Japanese way of using a Macintosh.
• René G.A. Ros, for all his generous aid.
• Adrian Le Hanne, for indirectly suggesting the signature of the WASTE Demo.
• Steven Stapleton and Andrew M. McKenzie, for being there.

